Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Cell Rep Med ; 5(3): 101461, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38460517

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal types of cancer, and novel treatment regimens are direly needed. Epigenetic regulation contributes to the development of various cancer types, but its role in the development of and potential as a therapeutic target for PDAC remains underexplored. Here, we show that PRMT1 is highly expressed in murine and human pancreatic cancer and is essential for cancer cell proliferation and tumorigenesis. Deletion of PRMT1 delays pancreatic cancer development in a KRAS-dependent mouse model, and multi-omics analyses reveal that PRMT1 depletion leads to global changes in chromatin accessibility and transcription, resulting in reduced glycolysis and a decrease in tumorigenic capacity. Pharmacological inhibition of PRMT1 in combination with gemcitabine has a synergistic effect on pancreatic tumor growth in vitro and in vivo. Collectively, our findings implicate PRMT1 as a key regulator of pancreatic cancer development and a promising target for combination therapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Epigenesis, Genetic , Gemcitabine , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/therapeutic use , Repressor Proteins/genetics , Repressor Proteins/metabolism
2.
Exp Mol Med ; 56(3): 674-685, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38443598

ABSTRACT

Mitophagy induction upon mitochondrial stress is critical for maintaining mitochondrial homeostasis and cellular function. Here, we found that Mst1/2 (Stk3/4), key regulators of the Hippo pathway, are required for the induction of mitophagy under various mitochondrial stress conditions. Knockdown of Mst1/2 or pharmacological inhibition by XMU-MP-1 treatment led to impaired mitophagy induction upon CCCP and DFP treatment. Mechanistically, Mst1/2 induces mitophagy independently of the PINK1-Parkin pathway and the canonical Hippo pathway. Moreover, our results suggest the essential involvement of BNIP3 in Mst1/2-mediated mitophagy induction upon mitochondrial stress. Notably, Mst1/2 knockdown diminishes mitophagy induction, exacerbates mitochondrial dysfunction, and reduces cellular survival upon neurotoxic stress in both SH-SY5Y cells and Drosophila models. Conversely, Mst1 and Mst2 expression enhances mitophagy induction and cell survival. In addition, AAV-mediated Mst1 expression reduced the loss of TH-positive neurons, ameliorated behavioral deficits, and improved mitochondrial function in an MPTP-induced Parkinson's disease mouse model. Our findings reveal the Mst1/2-BNIP3 regulatory axis as a novel mediator of mitophagy induction under conditions of mitochondrial stress and suggest that Mst1/2 play a pivotal role in maintaining mitochondrial function and neuronal viability in response to neurotoxic treatment.


Subject(s)
Mitophagy , Neuroblastoma , Protein Serine-Threonine Kinases , Serine-Threonine Kinase 3 , Animals , Humans , Mice , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitophagy/genetics , Mitophagy/physiology , Neurons/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Serine-Threonine Kinase 3/genetics , Serine-Threonine Kinase 3/metabolism , Drosophila/genetics
4.
Mol Cells ; 46(10): 592-610, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37706312

ABSTRACT

The Hippo kinase cascade functions as a central hub that relays input from the "outside world" of the cell and translates it into specific cellular responses by regulating the activity of Yes-associated protein 1 (YAP1). How Hippo translates input from the extracellular signals into specific intracellular responses remains unclear. Here, we show that transforming growth factor ß (TGFß)-activated TAK1 activates LATS1/2, which then phosphorylates YAP1. Phosphorylated YAP1 (p-YAP1) associates with RUNX3, but not with TEAD4, to form a TGFß-stimulated restriction (R)-point-associated complex which activates target chromatin loci in the nucleus. Soon after, p-YAP1 is exported to the cytoplasm. Attenuation of TGFß signaling results in re-localization of unphosphorylated YAP1 to the nucleus, where it forms a YAP1/TEAD4/SMAD3/AP1/p300 complex. The TGFß-stimulated spatiotemporal dynamics of YAP1 are abrogated in many cancer cells. These results identify a new pathway that integrates TGFß signals and the Hippo pathway (TGFß→TAK1→LATS1/2→YAP1 cascade) with a novel dynamic nuclear role for p-YAP1.


Subject(s)
Adaptor Proteins, Signal Transducing , Transforming Growth Factor beta , YAP-Signaling Proteins , Adaptor Proteins, Signal Transducing/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/physiology
5.
Nat Commun ; 14(1): 3746, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353518

ABSTRACT

Brown adipose tissue (BAT) has abundant mitochondria with the unique capability of generating heat via uncoupled respiration. Mitochondrial uncoupling protein 1 (UCP1) is activated in BAT during cold stress and dissipates mitochondrial proton motive force generated by the electron transport chain to generate heat. However, other mitochondrial factors required for brown adipocyte respiration and thermogenesis under cold stress are largely unknown. Here, we show LETM1 domain-containing protein 1 (LETMD1) is a BAT-enriched and cold-induced protein required for cold-stimulated respiration and thermogenesis of BAT. Proximity labeling studies reveal that LETMD1 is a mitochondrial matrix protein. Letmd1 knockout male mice display aberrant BAT mitochondria and fail to carry out adaptive thermogenesis under cold stress. Letmd1 knockout BAT is deficient in oxidative phosphorylation (OXPHOS) complex proteins and has impaired mitochondrial respiration. In addition, BAT-specific Letmd1 deficient mice exhibit phenotypes identical to those observed in Letmd1 knockout mice. Collectively, we demonstrate that the BAT-enriched mitochondrial matrix protein LETMD1 plays a tissue-autonomous role that is essential for BAT mitochondrial function and thermogenesis.


Subject(s)
Adipose Tissue, Brown , Mitochondrial Proteins , Thermogenesis , Animals , Male , Mice , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
6.
EMBO J ; 42(11): e112126, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36919851

ABSTRACT

The Hippo pathway is a central regulator of organ size and tumorigenesis and is commonly depicted as a kinase cascade, with an increasing number of regulatory and adaptor proteins linked to its regulation over recent years. Here, we propose that two Hippo signaling modules, MST1/2-SAV1-WWC1-3 (HPO1) and MAP4K1-7-NF2 (HPO2), together regulate the activity of LATS1/2 kinases and YAP/TAZ transcriptional co-activators. In mouse livers, the genetic inactivation of either HPO1 or HPO2 module results in partial activation of YAP/TAZ, bile duct hyperplasia, and hepatocellular carcinoma (HCC). On the contrary, inactivation of both HPO1 and HPO2 modules results in full activation of YAP/TAZ, rapid development of intrahepatic cholangiocarcinoma (iCCA), and early lethality. Interestingly, HPO1 has a predominant role in regulating organ size. HPO1 inactivation causes a homogenous YAP/TAZ activation and cell proliferation across the whole liver, resulting in a proportional and rapid increase in liver size. Thus, this study has reconstructed the order of the Hippo signaling network and suggests that LATS1/2 and YAP/TAZ activities are finetuned by HPO1 and HPO2 modules to cause different cell fates, organ size changes, and tumorigenesis trajectories.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Hippo Signaling Pathway , Signal Transduction , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Carcinoma, Hepatocellular/genetics , YAP-Signaling Proteins , Liver Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Phosphoproteins/genetics , Phosphoproteins/metabolism
7.
Lab Chip ; 22(20): 3920-3932, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36097851

ABSTRACT

Adipocyte dedifferentiation has recently gained attention as a process underpinning adipocyte plasticity; however, a lack of suitable experimental platforms has hampered studies into the underlying mechanisms. Here, we developed a microscope-mountable ceiling culture chip that provides a stable yet tunable culture environment for long-term live-imaging of dedifferentiating adipocytes. A detailed spatiotemporal analysis of mature adipocyte dedifferentiation utilizing the culture platform and Cre-recombinase tracers revealed the involvement of dynamic actin remodeling for lipid droplet (LD) secretion during adipocyte dedifferentiation. Additionally, Hippo, Hedgehog, and PPARγ signaling pathways were identified as potent regulators of adipocyte dedifferentiation. Contrary to the belief that adult adipocytes are relatively static, we show that adipocytes are very dynamic, relying on actin-driven mechanical forces to execute LD extrusion and intercellular LD transfer processes.


Subject(s)
Actins , Lipid Droplets , Adipocytes/metabolism , Cell Dedifferentiation , Lipid Droplets/metabolism , PPAR gamma/metabolism , Recombinases/metabolism
8.
Cells ; 11(9)2022 05 04.
Article in English | MEDLINE | ID: mdl-35563842

ABSTRACT

N-Myc downstream regulated gene 3 (NDRG3) is a unique pro-tumorigenic member among NDRG family genes, mediating growth signals. Here, we investigated the pathophysiological roles of NDRG3 in relation to cell metabolism by disrupting its functions in liver. Mice with liver-specific KO of NDRG3 (Ndrg3 LKO) exhibited glycogen storage disease (GSD) phenotypes including excessive hepatic glycogen accumulation, hypoglycemia, elevated liver triglyceride content, and several signs of liver injury. They suffered from impaired hepatic glucose homeostasis, due to the suppression of fasting-associated glycogenolysis and gluconeogenesis. Consistently, the expression of glycogen phosphorylase (PYGL) and glucose-6-phosphate transporter (G6PT) was significantly down-regulated in an Ndrg3 LKO-dependent manner. Transcriptomic and metabolomic analyses revealed that NDRG3 depletion significantly perturbed the methionine cycle, redirecting its flux towards branch pathways to upregulate several metabolites known to have hepatoprotective functions. Mechanistically, Ndrg3 LKO-dependent downregulation of glycine N-methyltransferase in the methionine cycle and the resultant elevation of the S-adenosylmethionine level appears to play a critical role in the restructuring of the methionine metabolism, eventually leading to the manifestation of GSD phenotypes in Ndrg3 LKO mice. Our results indicate that NDRG3 is required for the homeostasis of liver cell metabolism upstream of the glucose-glycogen flux and methionine cycle and suggest therapeutic values for regulating NDRG3 in disorders with malfunctions in these pathways.


Subject(s)
Glycogen Storage Disease , Methionine , Animals , Glucose/metabolism , Glycogen Storage Disease/metabolism , Liver/metabolism , Methionine/metabolism , Mice , Mice, Knockout , Phenotype , S-Adenosylmethionine/metabolism
9.
EMBO J ; 41(8): e109365, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35285539

ABSTRACT

Tissue homeostasis requires lineage fidelity of stem cells. Dysregulation of cell fate specification and differentiation leads to various diseases, yet the cellular and molecular mechanisms governing these processes remain elusive. We demonstrate that YAP/TAZ activation reprograms airway secretory cells, which subsequently lose their cellular identity and acquire squamous alveolar type 1 (AT1) fate in the lung. This cell fate conversion is mediated via distinctive transitional cell states of damage-associated transient progenitors (DATPs), recently shown to emerge during injury repair in mouse and human lungs. We further describe a YAP/TAZ signaling cascade to be integral for the fate conversion of secretory cells into AT1 fate, by modulating mTORC1/ATF4-mediated amino acid metabolism in vivo. Importantly, we observed aberrant activation of the YAP/TAZ-mTORC1-ATF4 axis in the altered airway epithelium of bronchiolitis obliterans syndrome, including substantial emergence of DATPs and AT1 cells with severe pulmonary fibrosis. Genetic and pharmacologic inhibition of mTORC1 activity suppresses lineage alteration and subepithelial fibrosis driven by YAP/TAZ activation, proposing a potential therapeutic target for human fibrotic lung diseases.


Subject(s)
Adaptor Proteins, Signal Transducing , YAP-Signaling Proteins , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acids, Essential , Animals , Cell Differentiation , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice
10.
Front Immunol ; 13: 1038936, 2022.
Article in English | MEDLINE | ID: mdl-36618429

ABSTRACT

The release of neutrophils from the bone marrow into the blood circulation is essential for neutrophil homeostasis and the protection of the organism from invading microorganisms. Granulocyte colony-stimulating factor (G-CSF) plays a pivotal role in this process and guides granulopoiesis as well as the release of bone marrow neutrophils into the blood stream both during homeostasis and in case of infection through activation of the G-CSF receptor/signal transduction and activation of transcription 3 (STAT3) signaling pathway. Here, we investigated the role of the mammalian sterile 20-like kinase 1 (MST1) for neutrophil homeostasis and neutrophil mobilization. We found increased plasma levels of G-CSF in Mst1 -/- mice compared to wild type mice both under homeostatic conditions as well as after stimulation with the proinflammatory cytokine TNF-α. In addition, G-CSF-induced mobilization of neutrophils from the bone marrow into the blood circulation in vivo was markedly reduced in the absence of MST1. Interestingly, this was not accompanied by differences in the number of blood neutrophils. Addressing the underlying molecular mechanism of MST1-regulated neutrophil mobilization, we found reduced STAT3 phosphorylation and impaired upregulation of CXCR2 in Mst1 -/- bone marrow neutrophils compared to wild type cells, while JAK2 phosphorylation was not altered. Taken together, we identify MST1 as a critical modulator of neutrophil homeostasis and neutrophil mobilization from the bone marrow, which adds another important aspect to the complex role of MST1 in regulating innate immunity.


Subject(s)
Bone Marrow , Neutrophils , Receptors, Granulocyte Colony-Stimulating Factor , STAT3 Transcription Factor , Animals , Mice , Granulocyte Colony-Stimulating Factor/metabolism , Homeostasis , Signal Transduction , Receptors, Granulocyte Colony-Stimulating Factor/metabolism , STAT3 Transcription Factor/metabolism
11.
Nat Commun ; 12(1): 4928, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34389720

ABSTRACT

Diabetes results from a decline in functional pancreatic ß-cells, but the molecular mechanisms underlying the pathological ß-cell failure are poorly understood. Here we report that large-tumor suppressor 2 (LATS2), a core component of the Hippo signaling pathway, is activated under diabetic conditions and induces ß-cell apoptosis and impaired function. LATS2 deficiency in ß-cells and primary isolated human islets as well as ß-cell specific LATS2 ablation in mice improves ß-cell viability, insulin secretion and ß-cell mass and ameliorates diabetes development. LATS2 activates mechanistic target of rapamycin complex 1 (mTORC1), a physiological suppressor of autophagy, in ß-cells and genetic and pharmacological inhibition of mTORC1 counteracts the pro-apoptotic action of activated LATS2. We further show a direct interplay between Hippo and autophagy, in which LATS2 is an autophagy substrate. On the other hand, LATS2 regulates ß-cell apoptosis triggered by impaired autophagy suggesting an existence of a stress-sensitive multicomponent cellular loop coordinating ß-cell compensation and survival. Our data reveal an important role for LATS2 in pancreatic ß-cell turnover and suggest LATS2 as a potential therapeutic target to improve pancreatic ß-cell survival and function in diabetes.


Subject(s)
Autophagy , Diabetes Mellitus/metabolism , Insulin-Secreting Cells/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cell Line, Tumor , Cell Survival/genetics , Cells, Cultured , Diabetes Mellitus/genetics , Diabetes Mellitus/pathology , Humans , Insulin-Secreting Cells/cytology , Mechanistic Target of Rapamycin Complex 1/genetics , Mice, Inbred C57BL , Mice, Knockout , Protein Serine-Threonine Kinases/genetics , RNA Interference , Rats , Signal Transduction/genetics , Tumor Suppressor Proteins/genetics
12.
Life Sci Alliance ; 4(10)2021 10.
Article in English | MEDLINE | ID: mdl-34404733

ABSTRACT

Contact inhibition is a key cellular phenomenon that prevents cells from hyper-proliferating upon reaching confluence. Although not fully characterized, a critical driver of this process is the Hippo signaling pathway, whose downstream effector yes-associated protein plays pivotal roles in cell growth and differentiation. Here, we provide evidence that the E3 ligase WWP1 (WW-domain containing protein 1) mono-ubiquitinates AMOTL2 (angiomotin-like 2) at K347 and K408. Mono-ubiquitinated AMOTL2, in turn, interacts with the kinase LATS2, which facilitates recruitment of the upstream Hippo pathway component SAV1 and ultimately promotes yes-associated protein phosphorylation and subsequent cytoplasmic sequestration and/or degradation. Furthermore, contact inhibition induced by high cell density promoted the localization and stabilization of WWP1 at cell junctions, where it interacted with Crumbs polarity proteins. Notably, the Crumbs complex was functionally important for AMOTL2 mono-ubiquitination and LATS activation under high cell density conditions. These findings delineate a functionally important molecular mechanism in which AMOTL2 mono-ubiquitination by WWP1 at cell junctions and LATS activation are tightly coupled to upstream cell density cues.


Subject(s)
Angiomotins/metabolism , Contact Inhibition , Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Angiomotins/genetics , Contact Inhibition/genetics , Enzyme Activation , Humans , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/genetics , Protein Transport , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
13.
Cell Mol Life Sci ; 78(5): 2315-2328, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32975614

ABSTRACT

Pattern-recognition receptors including Toll-like receptors (TLRs) recognize invading pathogens and trigger an immune response in mammals. Here we show that mammalian ste20-like kinase 1/serine/threonine kinase 4 (MST1/STK4) functions as a negative regulator of lipopolysaccharide (LPS)-induced activation of the TLR4-NF-κB signaling pathway associated with inflammation. Myeloid-specific genetic ablation of MST1/STK4 increased the susceptibility of mice to LPS-induced septic shock. Ablation of MST1/STK4 also enhanced NF-κB activation triggered by LPS in bone marrow-derived macrophages (BMDMs), leading to increased production of proinflammatory cytokines by these cells. Furthermore, MST1/STK4 inhibited TRAF6 autoubiquitination as well as TRAF6-mediated downstream signaling induced by LPS. In addition, we found that TRAF6 mediates the LPS-induced activation of MST1/STK4 by catalyzing its ubiquitination, resulting in negative feedback regulation by MST1/STK4 of the LPS-induced pathway leading to cytokine production in macrophages. Together, our findings suggest that MST1/STK4 functions as a negative modulator of the LPS-induced NF-κB signaling pathway during macrophage activation.


Subject(s)
Macrophages/metabolism , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , TNF Receptor-Associated Factor 6/metabolism , Toll-Like Receptor 4/metabolism , Animals , Cells, Cultured , Cytokines/blood , Cytokines/genetics , Cytokines/metabolism , HEK293 Cells , Humans , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Macrophages/cytology , Macrophages/drug effects , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics , Sepsis/blood , Sepsis/genetics , Sepsis/metabolism , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , Signal Transduction/drug effects , Survival Analysis , TNF Receptor-Associated Factor 6/genetics , Toll-Like Receptor 4/genetics , Ubiquitination/drug effects
14.
Cancer Res ; 80(21): 4768-4779, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32900774

ABSTRACT

The development of pancreatic cancer is heavily dependent upon the aberrant activation of KRAS signaling. Among the downstream targets of KRAS, the effectors of the Hippo pathway YAP and TAZ (YAP/TAZ) are crucial during cancer initiation and progression. However, little is known about the cell type-specific effects of YAP/TAZ on the development of pancreatic cancer. Here we clarify the unique consequences of YAP/TAZ activation in the ductal cell population of the pancreas by generating mice with pancreatic duct cell-specific, inducible knockouts of Lats1 and Lats2, the main kinases upstream of YAP/TAZ. Oncogenic activation of YAP by deletion of Lats1/2 in ductal cells led to the rapid transformation of the pancreas, which was accompanied by a robust increase in the expression of YAP and AP-1 target genes. Pharmacologic inhibition of AP-1 activity induced death in Lats1/2 knockout organoids and attenuated YAP-dependent transformation of the pancreas in vivo. Both YAP and AP-1 were activated during the development of KRAS-dependent cancer in mice and human patients with pancreatic ductal adenocarcinoma, suggesting that this signaling hub represents an important mediator of pancreatic cancer development and progression. Collectively, these data define a YAP-dependent mechanism of pancreatic cancer cell development and suggest that inhibition of AP-1 can suppress this development. SIGNIFICANCE: A pancreatic ductal cell-specific knockout mouse model featuring constitutively active YAP allows for the study of YAP-dependent transformation of the pancreas and for screening pharmacologically active inhibitors.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Cycle Proteins/metabolism , Pancreatic Neoplasms/pathology , Transcription Factor AP-1/metabolism , Transcription Factors/metabolism , Animals , Carcinoma, Pancreatic Ductal/metabolism , Humans , Mice , Mice, Knockout , Pancreatic Neoplasms/metabolism , YAP-Signaling Proteins , Pancreatic Neoplasms
15.
Mol Cells ; 43(5): 491-499, 2020 May 31.
Article in English | MEDLINE | ID: mdl-32451369

ABSTRACT

Hippo signaling acts as a tumor suppressor pathway by inhibiting the proliferation of adult stem cells and progenitor cells in various organs. Liver-specific deletion of Hippo pathway components in mice induces liver cancer development through activation of the transcriptional coactivators, YAP and TAZ, which exhibit nuclear enrichment and are activated in numerous types of cancer. The upstream-most regulators of Warts, the Drosophila ortholog of mammalian LATS1/2, are Kibra, Expanded, and Merlin. However, the roles of the corresponding mammalian orthologs, WWC1, FRMD6 and NF2, in the regulation of LATS1/2 activity and liver tumorigenesis in vivo are not fully understood. Here, we show that deletion of both Wwc1 and Nf2 in the liver accelerates intrahepatic cholangiocarcinoma (iCCA) development through activation of YAP/TAZ. Additionally, biliary epithelial cell-specific deletion of both Lats1 and Lats2 using a Sox9-CreERT2 system resulted in iCCA development through hyperactivation of YAP/TAZ. These findings suggest that WWC1 and NF2 cooperate to promote suppression of cholangiocarcinoma development by inhibiting the oncogenic activity of YAP/TAZ via LATS1/2.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Cholangiocarcinoma/genetics , Epithelial Cells/physiology , Intracellular Signaling Peptides and Proteins/genetics , Liver/physiology , Neurofibromin 2/genetics , Phosphoproteins/genetics , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Acyltransferases , Adaptor Proteins, Signal Transducing/genetics , Animals , Carcinogenesis/genetics , Cell Cycle Proteins/genetics , Cell Proliferation/genetics , Cholangiocarcinoma/metabolism , Cholangiocarcinoma/pathology , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Transgenic , Neurofibromin 2/metabolism , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/genetics , Tissue Array Analysis , Transcription Factors/genetics , YAP-Signaling Proteins
16.
Nat Commun ; 11(1): 519, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980640

ABSTRACT

Fibroblastic reticular cells (FRCs) are immunologically specialized myofibroblasts of lymphoid organ, and FRC maturation is essential for structural and functional properties of lymph nodes (LNs). Here we show that YAP and TAZ (YAP/TAZ), the final effectors of Hippo signaling, regulate FRC commitment and maturation. Selective depletion of YAP/TAZ in FRCs impairs FRC growth and differentiation and compromises the structural organization of LNs, whereas hyperactivation of YAP/TAZ enhances myofibroblastic characteristics of FRCs and aggravates LN fibrosis. Mechanistically, the interaction between YAP/TAZ and p52 promotes chemokine expression that is required for commitment of FRC lineage prior to lymphotoxin-ß receptor (LTßR) engagement, whereas LTßR activation suppresses YAP/TAZ activity for FRC maturation. Our findings thus present YAP/TAZ as critical regulators of commitment and maturation of FRCs, and hold promise for better understanding of FRC-mediated pathophysiologic processes.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Cell Differentiation , Fibroblasts/metabolism , Lymph Nodes/cytology , Trans-Activators/metabolism , Adipocytes/metabolism , Animals , Chemokines/metabolism , Fibroblasts/ultrastructure , Lymph Nodes/ultrastructure , Lymphotoxin beta Receptor/metabolism , Mesoderm/metabolism , Mice, Inbred C57BL , Myofibroblasts/metabolism , YAP-Signaling Proteins
17.
Genes Dev ; 34(1-2): 72-86, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31831627

ABSTRACT

Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ) are key effectors of the Hippo pathway to control cell growth and organ size, of which dysregulation yields to tumorigenesis or hypertrophy. Upon activation, YAP/TAZ translocate into the nucleus and bind to TEAD transcription factors to promote transcriptional programs for proliferation or cell specification. Immediate early genes, represented by AP-1 complex, are rapidly induced and control later-phase transcriptional program to play key roles in tumorigenesis and organ maintenance. Here, we report that YAP/TAZ directly promote FOS transcription that in turn contributes to the biological function of YAP/TAZ. YAP/TAZ bind to the promoter region of FOS to stimulate its transcription. Deletion of YAP/TAZ blocks the induction of immediate early genes in response to mitogenic stimuli. FOS induction contributes to expression of YAP/TAZ downstream target genes. Genetic deletion or chemical inhibition of AP-1 suppresses growth of YAP-driven cancer cells, such as Lats1/2-deficient cancer cells as well as Gαq/11 mutated uveal melanoma. Furthermore, AP-1 inhibition almost completely abrogates the hepatomegaly induced by YAP overexpression. Our findings reveal a feed-forward interplay between immediate early transcription of AP-1 and Hippo pathway function.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Gene Expression Regulation, Neoplastic , Trans-Activators/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Gene Deletion , Gene Expression Regulation, Neoplastic/drug effects , Genes, fos/genetics , HEK293 Cells , Humans , Liver/metabolism , Melanoma/physiopathology , Mice , Mitogens/pharmacology , Organ Size/genetics , Promoter Regions, Genetic/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Uveal Neoplasms/physiopathology , YAP-Signaling Proteins
18.
Nat Commun ; 10(1): 5755, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848340

ABSTRACT

Autophagy perturbation represents an emerging therapeutic strategy in cancer. Although LATS1 and LATS2 kinases, core components of the mammalian Hippo pathway, have been shown to exert tumor suppressive activities, here we report a pro-survival role of LATS1 but not LATS2 in hepatocellular carcinoma (HCC) cells. Specifically, LATS1 restricts lethal autophagy in HCC cells induced by sorafenib, the standard of care for advanced HCC patients. Notably, autophagy regulation by LATS1 is independent of its kinase activity. Instead, LATS1 stabilizes the autophagy core-machinery component Beclin-1 by promoting K27-linked ubiquitination at lysine residues K32 and K263 on Beclin-1. Consequently, ubiquitination of Beclin-1 negatively regulates autophagy by promoting inactive dimer formation of Beclin-1. Our study highlights a functional diversity between LATS1 and LATS2, and uncovers a scaffolding role of LATS1 in mediating a cross-talk between the Hippo signaling pathway and autophagy.


Subject(s)
Autophagy/immunology , Carcinoma, Hepatocellular/pathology , Cell Survival/immunology , Liver Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Autophagy/drug effects , Beclin-1/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/mortality , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Datasets as Topic , Disease-Free Survival , Drug Resistance, Neoplasm/immunology , Hippo Signaling Pathway , Humans , Kaplan-Meier Estimate , Liver/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Liver Neoplasms/mortality , Lysine/metabolism , Mice , Mice, Knockout , Organoids , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Protein Stability , Signal Transduction/drug effects , Signal Transduction/immunology , Sorafenib/pharmacology , Sorafenib/therapeutic use , Tumor Suppressor Proteins/immunology , Ubiquitination , Xenograft Model Antitumor Assays
19.
J Mol Cell Biol ; 11(11): 1006-1017, 2019 12 23.
Article in English | MEDLINE | ID: mdl-30865227

ABSTRACT

The inhibitory effect of large tumor suppressor kinase (LATS1/2) on the activity of the oncoprotein yes-associated protein (YAP) is crucial to maintain tissue homeostasis. Proteomic studies have identified several new regulators of this process. Recently, citron kinase (CIT) was listed as a potential binding candidate of Hippo-related components, suggesting a new connection between CIT and the Hippo pathway. Aside from CIT's role in cytokinesis, the molecular crosstalk between CIT and the Hippo pathway is largely unknown. Here, we demonstrate a role for CIT as a scaffold protein linking LATS2 and YAP. More importantly, CIT interacts with LATS2 to directly suppress LATS2 phosphorylation at the hydrophobic motif-targeted by MST1, leading to LATS2 inactivation and YAP activation. By studying their genetic interactions, we found that Sticky, the CIT homolog in Drosophila melanogaster, functions with Warts to control Drosophila eye development. Together, our study confirms citron kinase as a novel regulator of the Hippo pathway.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Amino Acid Motifs , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Epistasis, Genetic , Genotype , Humans , Hydrophobic and Hydrophilic Interactions , Intracellular Signaling Peptides and Proteins/genetics , Models, Biological , Nuclear Proteins/metabolism , Phenotype , Phosphorylation , Protein Binding , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Trans-Activators/metabolism , YAP-Signaling Proteins
20.
Nat Commun ; 10(1): 838, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30783090

ABSTRACT

Hypoxia is a main driver of sprouting angiogenesis, but how tip endothelial cells are directed to hypoxic regions remains poorly understood. Here, we show that an endothelial MST1-FOXO1 cascade is essential for directional migration of tip cells towards hypoxic regions. In mice, endothelial-specific deletion of either MST1 or FOXO1 leads to the loss of tip cell polarity and subsequent impairment of sprouting angiogenesis. Mechanistically, MST1 is activated by reactive oxygen species (ROS) produced in mitochondria in response to hypoxia, and activated MST1 promotes the nuclear import of FOXO1, thus augmenting its transcriptional regulation of polarity and migration-associated genes. Furthermore, endothelial MST1-FOXO1 cascade is required for revascularization and neovascularization in the oxygen-induced retinopathy model. Together, the results of our study delineate a crucial coupling between extracellular hypoxia and an intracellular ROS-MST1-FOXO1 cascade in establishing endothelial tip cell polarity during sprouting angiogenesis.


Subject(s)
Endothelial Cells/metabolism , Forkhead Box Protein O1/metabolism , Hepatocyte Growth Factor/metabolism , Neovascularization, Physiologic/physiology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Active Transport, Cell Nucleus , Animals , Cell Hypoxia , Cell Polarity , Cells, Cultured , Forkhead Box Protein O1/genetics , Gene Expression Regulation , Hepatocyte Growth Factor/genetics , Human Umbilical Vein Endothelial Cells , Humans , Intracellular Signaling Peptides and Proteins , Mice, Inbred C57BL , Mice, Mutant Strains , Neovascularization, Pathologic/metabolism , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Reactive Oxygen Species/metabolism , Retina/cytology , Retina/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...